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THE FREEON N-ELECTRON PROCEDURE 
AND THE HUBBARD CONNECTION 

F . A .  M A T S E N  

Departments of Physics and Chemistry, The University of Texas, Austin, TX 78712, USA 

Abstract 

The Hubbard connection correlates Hückel molecular orbital and valence bond states by 
means of the Hfäckel-Hubbard Hamiltonian. The connection is greatly simplified through 
the use of the freeon N-electron procedure. The present paper reviews the mathematical 
background for the procedure and shows how it applies to the Hubbard connection. The 
allyl radical is taken as an example. 

1. Introduction 

The Hückel theory, while quite successful, has a number of serious deficiencies. 
It fails to predict 

the observed number of states, 

the observed separation between states, 

the spin (multiplicity) quantum number, and 

valence bond structures. 

These errors are inherent in one-electron theory, but are corrected in N-electron 
theory, which takes into account the explicit electron repulsion and the permutational 
syrmnetry (indistinguishability) of the electrons. In this paper, we introduce electron 
repulsion by means of the Hückel-Hubbard Hamiltonian, whose electron correlation 
parameter (x) provides the Hubbard connection between molecular orbital and valence 
bond states. The Hubbard connecüon for the aUyl radical is shown in fig. 1. 

© J.C. Baltzer AG, Scientific Publishing Company 



254 F.A. Matsen, The freeon N-electron procedure 

242 

,/2 2A + 2A 

/ "B 
0 

.,/2 

2 B -2V; 

0.o o!2 0'.4 0'.6 o18 i.o 
X 

Fig. 1. The Hubbard cormection for the allyl radical. 

2. The state labeling 

Electrons are identical, so the N-electron Hamiltonian must commute with the 
elements of the symmetric group S u, the group of permutations on the electron indices. 
It follows that the SN-irreducible spaces of the N-electron Hamiltonian are labeled by the 
S u quantum number, a partition of N which is denoted 

such that 

~ . - > % ~  . . . . .  st,, __. o 

and 

,~,&i = N.  
i 

A partition [X] has a graphical realization as a Young diagram, denoted YD[Ä,], com- 
posed of an array of N boxes with Al boxes in the first row, '7"2 boxes in the second row, 
etc. We denote by Y(N) the number of Young diagrams for N electrons (see table 1). 

Not all the states of the N-electron Hamiltonian are observed and these non- 
physical states are excluded by an exclusion principle. Thefermion exclusion principle 
(the Pauli antisymmetry principle) classifies as physical only those states which are 
antisymmetric under the permutation of fermion orbital indices. These are states whose 



FA. Matsen, The freeon N-electron procedure 255 

Table 1 

Partitions, Young diagrams, spins and multiplicities o f  the allyl system (N = Y(N) = 3) 

[Zl YD[XI S M 

[3] 

[2, 11 

[IS] 

Pauli excluded 

2 (doublet) c I = 2, C 2 = 1) 7 

c I = 3, c 2 = 0) 3_2 4 (quartet) 

Young diagram contains no more than one column. A fermion orbital is the tensor 
product of  a spin orbital I a )  = I a )  or I fl) and a freeon (spin-free) orbital, I v), i.e. 

Ico) = I v ) I ~ ) .  

For light atoms and in the absence of a magnetic field, the Hamiltonian is 
effecüvely spin-free, so the spin orbital is energeticaUy inert. For a freeon (spin-free) 
Hamiltonian, we employ the freeon N-electron procedure with a freeon exclusion 
principle, which limits the physical stares to those whose Young diagrams contain no 
more than two columns of lengths c~ > c 2 > 0. For these freeon Young diagmms, the S N 
quantum number translates into the spin and multiplicity quantum numbers as follows: 

and 

S = (c a - c2)/2 

M = c l - c 2 +  1. 

The freeon N-electron procedure is simpler, conceptually, than the fermion 
procedure because it removes, for the uniniüated, the temptaüon to believe in sp in-  spin 
or magnetic interactions between the electrons. 

3. The symmetric group and its algebra [1] 

The symmetric group is denoted 

Ss: {P/, i = 1 to N! }, 

where P/is a pennutation on the electron indices of  an N-electron wave function. For 
N = 3, the symmetric group is 
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$3: {I, (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)}, 

where (1, 3, 2) exchanges electron 1 for electron 3, electron 3 for electron 2, and 
electron 2 for electron 1. The multiplication table for S 3 is 

I 
(1, 2) 
(1, 3) 
(2, 3) 

(1, 2, 3) 
(1, 3, 2) 

I (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2) 

I (1, 2) (1, 3) (2, 3) (1, 2, 3) (1, 3, 2) 
(1, 2) I (1, 3, 2) (1, 2, 3) (2, 3) (1, 3) 
(1, 3) (1, 2, 3) I (1, 3, 2) (1, 2) (2, 3) 
(2, 3) (1, 3, 2) (1, 2, 3) I (1, 3) (1, 2) 

(1, 2, 3) (2, 3) (1, 2) (1, 3) (1, 3, 2) I 
(1, 3, 2) (1, 3) (2, 3) (1, 2) I (1, 2, 3) 

The Frobenius algebra of S N is an N! dimension, operator, vector space spanned by the 
group elements: 

FASN: {Pi' i= 1 tO N! }, 

with a general element 

X = ~ ,XiPi ,  Xi e complex field. 
i 

Since group mulüplication is associative, the Frobenius algebra is also associafive. 
A second basis is the Wigner basis 

FASN: { [~.1 ers ; [/~] = 1 to Y(N); r ,s  = 1 tof[Ä]}. 

The basis operators are called Wigner operators and have the form 

-I [z] e~[~ l =  (1/f  [~q) 2 [P/ 1,, Pi, 
i 

where -'i[P-1l[Zl-sr is the srth matrix element in the matrix representing p/-1 in the 
[A]th irreducible representation of S N (see tables 2 and 3). The dimension of 
the [A]th irreducible representation is 

h l l  h12 

f{Zl = N!I~ h21 h22 
h31 
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Table 2 

The irreducible representations and their character for S 3 

I (1, 2) ( 1 , 3 )  (2, 3) (1, 2 , 3 )  ( 1 , 3 , 2 )  

WFT] [11 [11 

[11 [-1] 

[; :] Ilo 

ig 2 0 

01~I4 

[11 

[-11 [-11 

B 

0 0 

[1] [11 

[11 [11 

-1 -1 

Table 3 

• The Wigner operators for S 3 

~II 

~'11 

~I I 

= (1/6) [1 + (1, 2) + (1, 3) + (2, 3) + (1, 2, 3) + (1, 3, 2)1 

= (1/6) [ / -  (1, 2) - (1, 3) - (2, 3) + (1, 2, 3) + (1, 3, 2)1 

= (1/3) [l + (1, 2) - ~[(1, 3) + (2, 3) + (1, 2, 3) + (1, 3, 2)11 

£12 
S~ 

£21 

¢22 

= (1/3) (~/3/2) [-(1, 3) + (2, 3) + (1, 2, 3) - (1, 3, 2)1 

= (1/3) (~312) [-(1, 3) + (2, 3) - (1, 2, 3) + (1, 3, 2)1 

= ~ [ I  - (1, 2) + ~[(1,  3)  + (2, 3) - (1, 2, 3) - (1, 3, 2)1] 

w h e r e  hij is the  n u m b e r  o f  squares  t raversed  by  an a r row drawn f rom the  r ight  t h rough  
the  i th  r ow  and  h o o k i n g  d o w n  th rough  the  j t h  colurnn,  and n: deno tes  the p r o d u c t  o f  the 
h Ü. F o r  example :  

f [Z,  l l = 3 ! / ~  ~ = 6 1 3 = 2 .  
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The dimensionality statement for FAS N is 

Nt = ~(f[ ; t ])2.  
[X] 

The inverse transformation is 

Pi = ~,  Ip  l [ ; t ]~ [~'1 
t l - i J r s  ~ r s  • 

[Z],r,s 

The mle of multiplicaüon of the Wigner operators is 

e[X],[, x'] tS([Z], [Ä])tS(s, '" [;tl 
r s  ~rs" = r )ers, . 

Then 

and 

Pi e~s z] S'rp ][,Z]ù[,X] -~" X - . t t l - i J r  $ ©r s 
r"  

e[Z]» x;'rp l[x,] - [~-] 
r s  1- i  -~- X . , tL l - i  J r s  C r s "  • 

r I 

4. Symmetry adaption 

Symmetry adaption is a basis transformation which factors the Hamiltonian 
matrix into blocks labeled by the S N quantum number [Z]. We apply symmetry adaption 
to the basis of the Nth rank, n-freeon, orthonormal, orbital-product space, 

V(nN): {1~) = Iv~)Iv~) . . . . .  IvN)} 

by means of Wigner operators. The symmetry-adapted vectors are called Wigner states: 

IG;r) - I r i s ;  [~]r) - Neff]lf~), r =  1 t o f  tzl 

Here, G = t2s denotes a Gelfand tableau; a useful mnemonic for the Wigner states 
which is taken from the theory of the unitary group U(n) [2]. A tableau is constructed 
by adding the orbitals in It2) to the Young diagram YD[Z] in nondescending order along 
rows and ascending order down columns. Note that the number of rows in YD[Z] 
cannot exceed n, the number of freeon orbitals. Further, since the freeon exclusion 
principle limits YD[Z] to no more than two columns, no more than two electrons may 
be assigned to the same freeon orbital. All other states are said to be Gelfand excluded. 
The number f,,[Z] of Gel'fand tableaux which can be constructed from n orbitals and 
YD[Z] is given by the following formula, due to Weyl: 
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f ~ [Z ]  = 

n n + l  

n -  1 n / ~  

n - 2  

The Pauli-allowed, atomic orbital Gel'fand tableaux for the allyl radical are listed in 
table 4. 

Table 4 

The Wigner states and their Gerfand labeling for the allyl radical 

The doublet states 

YD[2,I]=~; f3[2,1]=rc ~/rc ~ =24/3=8 

The quartet state 

YD[IS]= ~; f3[lS]=~¢~ /7r~=6/6=1 

Note that for s = 2 and double occupancy, the Wigner vectors vanish. These states are 
Gel'fandforbidden. To emphasize this, we give these zero states an illegal Gerfand 
notation (see table 5). 

5. The S~,-Wigner-Eckart theorem 

For an operator 0 on V(v N) such that 

[o,e]=o, v ~ ~ s  N, 
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Table 5 

Wigner vectors for the allyl radical 

~ ; 1) = rl e~al)la-z)Ib3) = ~6(2 la1)[a2)l b3) -[al)Ib2)la~) - Ibl) la 'a)I~})  

1~.2>=O.~~,a,>,>.b¢=~(,o~>.b~>,>-,b,>*.>'a~>) 
I ~ ; 1 >  = 

~ ; 1 ) =  

I ; 2 ) =  

~ ; 1 ) =  

- ½(Iq) I b2) l a3) + lal)l c2) 1 b3) + Ic01 az) l b3) + Ibl)l c2) I a3)) 

[ ~ ; 2 ) = r l e 2 1 l a l ) l b 2 ) l c 3 )  

= ½(-I q ) lb2 ) l  a~)+lal)  I c2)1 ba ) - Iq ) l a2 ) lb3 )+ lb l ) l c2 ) l a~ )  ) 

~ ; 2 ) - -  

etc. 

77 el~21al) I a2) I b3) = 0 (Gel'fand forbidden) 

7/e22~lal) I a2) I b3) = 0 (Gel'fand forbidden) 

_ ~ Ib~)lb2)la3)-Ia~)lb2)lb3)-Ib~)laz)lb3) ) o e~lb~) lb2) la3) = ~ ( 2  

77 e2~l b~)Ib2)la3) = ~(Ibl)la2) I b3) -la~)Ib2)Ib3)) 

r I et~21bl)l b2) l a3) = 0 (Gerfand forbidden) 

71 e2~21bl)l b2)l a3) = 0 (Gel'fand forbidden) 

7/e12 lal)l b2)] c3) 

½(-I cl)1b2)1 a3)+la~)I c2)1 b3)+lc , ) l  a2)lb3)+Ibm) I c2) I a3)) 

1"1 e22 ]al ) [ b2) ] c3) 

- ¢a(lal)Ib2) I ca) - Ib l )  la2) I ca) 

+ ½(Icx)l b2)l a~) +lal)  [ c2)l b3) - icl) I a2)l b3) - Ib l )  I c2)l a3)) 
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the matrix elements over the Wigner states are given by 

(G, [)~] rlOIG'; [~,']r') = ~[/~], [:t']) ~(r, r')(G, [&]IIOII[X]G'), 

where 

(G;[,~]IIOII[~.]G') = N N"(f~lOe[Z;]lff2"), 
SS 

which follows directly from the rule of multiplication of the Wigner operators. We see 
that the matrix representation of 0 in V(n N) is factored into Y(N) blocks labeled by [X] 
and that the [X]th block is, in turn, factored into f[Z] identical blocks. 

The Wigner states are orthogonal (0  = I). The orthogonality in r is explicit. If 
the orbitals in f~ and f~' are different, the matrix element vanishes because of the 
orthogonality of the orbitals. If f~ = f~', the matrix element vanishes because only e TM 

S S  

contain ! or the Wigner states are Gerfand forbidden. 
For 0 = H, a freeon Hamiltonian, the eigenvalues with the [~] quantum number 

aref[X]-fold degenerate. This is a nonphysical degeneracy which is removed by the anti- 
symmetrization of products of freeon and spin spaces (see section 11). 

6. The spin space 

The Nth product spin space is denoted 

v(2N): {Iz)  = l a ( N ) )  = J a , ) l a )  . . . . .  JAN), ,:r = a or ~}. 

Since there am only two spin orbitals, the spin YD[Ä, a] contains no more than two rows. 
It is easy to show that the spin Wigner states am eigenvectors to S 2 and that invafiant 
spaces am labeled by: 

[~a] = [ N -  S, S] 

(see table 6). The spin Wigner states are constructed by means of the Wigner operator 
in the same way as the freeon Wigner states and are labeled IGa[AY];r). 

7. Antisymmetrization 

Antisymmetrization is the projection of N-electron fermion orbital product states 
which are antisymmetric under the permutation p~O of the fermion orbital indices. The 
antisymmetrizer is a projector of the form 

A = e ~zl(1/N !) ~ , ( - 1 ) P e  ~', 
P 
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Table 6 

The spin tableaux for S N. Also listed are the S quantum numbers 

Quartet st,am 

YD[3,0] = 

M s 3/2 1/2 

Doublet state 

YD[2,I] = 

Ms 

-1/2 

1/2 -1/2 

-3/2 

where [~] = [1N]. Since we wish to apply the antisymmetrizer to a fermion space 
constructed from products of symmetry-adapted freeon and spin states, we write it in 
the form 

A = ( l /N! )  ~ ( - 1 ) P P  v× pa,  
P 

where pV and Paare permutations on the indices of freeon and spin orbitals, 
respectively. The antisymmetric vectors have the following form: 

IG v[)~];G a[~, ~];[1N]) = A IG v[~]p)lG a[~,']0 

= ( 1/N ! ) ~ ( -  1)PP v I G v [&] r)P e I G cr[&,l Ò 
P 

e tzl t~l = (1]N !) ~ ~ ( - 1 )  [P]r,r[P], IG v[X]r')lG a[X']t') 
r't" P 

= E (  [1 N !.)[E[P]r,r[L]'[ ] t t  P [~ ' ' ' ] ] jGv[~]r t ) jGa[~ ' , ] ` , )  , 
r't" L P ] 

where 

te]~~" = (-1)»te]~÷) 

Here, [~]* denotes the irreducible representation of S N with is conjugate to [~]. In 
YD[A,]*, the mws and columns of YD[&] are interchanged. As a consequence of the 
irreducible representation orthogonality theorem: 
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[ . .  ] = t~([Z], [)],]*) ¢5(r, t) rS(r; t')(N![f[x]), 

so the normalized antisymmetric vector is 
« 

IG v[Z], GCr[Z]* ;[1N]) = (1/f[Z])l/2 ZIG v[~,]r) IGa[~,]*r). 
¥ 

The [2, 1] irreducible representation is self-conjugate; i.e [2, 1] = [2, 1]* and an anü- 
symmetrized vector is 

IGV[2, 1], Ga[2, 1]*;[IN])= (1/2)1/21GV[2, 1]1)IGa[2,112) 

+ JGV[2,112)IGa[2, 1]1). 

For example, 

- 1 / 2  1/2 1 - ( ) (--4~(21al)la2)lb3)-Ial)lb2)la3)-Ibl)la2)la3))-?2(lal)lflz)lct3) 

- I f l l ) l a2 ) la3 ) )+(1 /2 )  1/2) ( lal) lbe)la3)-Ibl) lae)la3))-~(21al) laa)]f l3)  

- I  a l  )lfl2)l c t3)-If l l  )l a2)l  a3)). 

The matrix element of the freeon Hamiltonian over a pair of normalized antisymmetric 
vectors is then 

(G n, [A,];Ga[$]*IH [ GV';[$'], Ga[~,']*;[1N]) 

= (1 ]f[z])~(G v[X]rlH I (G va, [;~']r')(Ga[,~,]*rl Ga[,~,']*r ") 
F r  t 

= g([)~], [Z']* )¢5(r, r')( 1 f f  [Xl) ~.,(G v[~,]rlH I G v'[X]r) 
r 

- tS([&], [ X ' ] ) ( G V [ X ] l l H  IIG v'[X]). 

We see that antisymmetrization removes the degeneracy inherent in the freeon forma- 
üon and that the freeon eigenvalues are obtained by diagonalizing the reduced matrix- 
element representation of the freeon Hamiltonian. 
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8. The ketbra Hamiltonian 

THEOREM 

Any freeon Hamiltonian can be put in the following form: 

H = ~.,hrs(Ers +Esr) -  (1/2) 
r 

where 
N 

Ers = ~ Iri)(sil. 
n = l  

Vrs,tu (ErsEtu - S(S, t)Eru ), 
r , s , l , u  

Proof 

We write the Schrödinger Hamiltonian in the following form: 

Here, 

H = H ° +  V. 

/-/° = Eh~,  
i 

w h e r e  h i is a general one-electron Hamiltonian and 

V = ~, e2/rij .  
i<j 

The matrix elements of the Schrödinger Hamiltonian in V(n N) are duplicated with the 
following ketbra realizaüon: 

and 

N Æ 

H ° =  ~ ~ Iri>h~s(sil 
i=1 r,s=l 

n /,1 

v =  E E Itj>lri>Vr,.u<S,l%t= E v,, uW,, u, 
i<j r,s,t,u=l r,s,t,u=l 

where the parameters h s and rs,t, ' are defined as follows: 

hrs = <r/Ihils/) 

and 

v ,  u = <tjl <r~l~ls~> luj>. 
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Both parameters are independent of the electron indices i and j because electrons are 
identical. In terms of the E s, we have 

n 

H O= ~ hrsErs. 
r,s= 1 

To express V, we rewrite Ws,tu as follows: 

Wrs, tu  : Z It j} lr i)(si l(uyl  = ~(Ir , } (s i l ) (I ty}(uyl)  
i<j  i<j  

l ~(Iri)(sil)(Itj)(uyl) =-~ 
i ~ j  

N N 

1 ~(Iri}(sil)(Itj)(ujl)- ~, (Iri)(sil)(Iti)(uil), 
l,j i= 1 

where we have added and subtracted terms for i = j. Now, 

(s/It/) = S(s, t), 

independent of i, so 

N N 

Wrs,tu = } ~(lri)(sil)(ltj)(u)[)- S(s, t) Z Iri}(ui[ 
t,j i= 1 

= }(ErsEtu - eS(s, t)Er,, ). [] 

To obtain the eigenvalues and eigenvectors of the Hamiltonian, we compute the 
Hamiltonian matrix in a symmetry-adapted basis of multiplicity M spanned by Wigner 
states: 

[H] = [(GIHIG')], 

where 

1 (G I H I G ' )  = ~hrs(GIErslG')+ ~ ~., vrs,tu(Gl(ErsEtu - •(s, t)Eru)lG'). 
r~s r»s»l»u 

This form of the Hamiltonian is called the "freeon unitary group" Hamiltonian 
because E s  are the infinitesimal generators of the unitary group U(n), where n is the 
number of the freeon orbitals. This Hamiltonian is the basis of the freeon unitary group 
formulation of the N-electron theory. The irreducible spaces of U(n) are also labeled by 
parütions of N, the same freeon exclusion principle applies, and state labeling applies. 
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The basis vectors are labeled by Gel'fand tableaux and am generated algebraically from 
the highest-weight state [2] and the Hamiltonian matrix elements evaluated alge- 
braically. 

In some formulations of the unitary group pmcedure, the U(n) generators am 
expressed in second-quantized form as follows: 

Ers = atraa a + at, p a  #. 

We prefer to keep spin out of the freeon formulation. 

9. The Hückel-Hubbard theory 

The H ü c k e l - H u b b a r d  theory employs the following orbital space: 

V:{Ir), r = 1 to n}, 

where n is the number of atomic sites in the ~r system and the Hamiltonian 

H = (x - 1 ) ~., (Ers + E,r) + x y 
( , s )  • 

The  correlation parameter  (x) is defined by 

O < x - -  U/(U + t) < 1, 

where t is the negative of the Hückel fl and (the Hubbard) U is the electmn repulsion 
parameter for two electrons on a single site. For x = 1, the atomic orbital Gerfand states 
are eigenvectors to the Hamilttonian with eigenvalues 

E(1) = d, 

where d is the number of doubly occupied atomic orbitals (see fig. 1). 
The Hückel-Hubbard Hamiltonian can also be expressed in terms of molecular  

orbitals. The expansion of the atomic orbitals in terms of molecular orbitals is given by 
the Hückel theory: 

Ir) = • lk ) (k l r>.  
k 

Furthermore, 

Bt = <kilhil ~ ) =  ~(k,l)e«(x- 1) 

and 
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Vkt,r,,n = (mjl (ki lgijl li>l nj) = 

NOW, 

SO 

SO 

<tjl (rilgijl si>luj><mjl tj>(kilri)(sil li)(ujlnj>. 
r~s»l»u 

(tjl(rilgijlsi)luj) = t~(r, s, t, u)x, 

Okl,,~n = X ~.(m It) (k I r) <rl 1) (s I 1), 

1 H = ( x -  1 ) ~ e k E k k  +X ~ ~ Vkl,mn(EklEmn -- 6(S,t)Ekn). 
k kl,ran 

For x = 0, the molecular orbital Gerfand states are eigenvectors to the Hückel-Hubbard 
Hamiltonian with eigenvalues 

E(0) = ~ wc e«, 
k 

where ~: is the energy of  the kth molecular orbital and w c is the occupation number of  
the kth molecular orbital. For the allyl radical, the molecular orbital energies in reduced 
units are -~/2, 0 and +',/2 (see fig. 1). 

The spectrum for interrnediate values of x can be computed from the Wigner 
states and the ketbra form of the generators, or by means of the unitary group algebra. 

10. The  l inear Hückel-Hubbard spectrum 

We have legitimized and explicated the freeon N-electron procedure and have 
applied it to the Hückel-Hubbard theory of  the allyl radical. We now note that in many 
cases, including the allyl radical, the Hubbard cormection can be made without detailed 
calculation by a linear interpolation scheme, which proceeds as follows. 

(1) Plot and label with appropriate Gerfand tableaux the molecular orbita_l eigen- 
values at x = 0 and the atomic orbital eigenvalues at x = 1. 

(2) Connect the molecular orbital states with the atomic orbital states in order of 
increasing energy with the same mulfiplicity and point group symmetry. 

(3) Observe the no-crossing mle for states of  the same multiplicity and point 
group symmetry. 

We take the minimum point group of  the allyl radical to be C 2. The point group 
symmetry of  the MO Gerfand states (x = 0) is A or B if the occupancy of  12) is even 
or odd, respecüvely. The degenerate ground atomic states (x = 1) combine to form an 
A state and a B state (see below). This is sufficient to draw the linear correlaüon diagram 
shown in fig. 1. 
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11. The valence bond states 

Our final task is to construct valence bond states from our freeon atomic Wigner 
states. We define a valence bond state la - b, c - d . . . .  ) as a state in which bonded- 
orbital pairs are invariant under the exchange of  the orbitals in the pairs; thus, 

Pab P d . . . l a - c , c - d  . . . .  ) =  l a - c , c - d  . . . .  ). 

To construct these vectors, we require the transformation properties of  the Wigner states 
under orbital permutations: 

p O [ G ) =  A,~[Xl , o  '**:rs "aol ¢2) 

^ r .  ['a']t» • ,~-1 

[;tl ù tzl f2) = Z[P12 ],~,N,~ r~, 
S" 

= Z[e~2 lI~~)IG'). 
$' 

Consequently, the transfonnation properties of  the Wigner states can be determined 
from the irreducible representations of S N (see table 7). 

Table 7 

The transforrnation properties of the Wigner doublet states for N = 3 

+(1/-42) 

-(1/~/2) 

The valence bond states for the aUyl radical are listed in table 8. We note that 
the three valence bond states are linearly dependent. This is an example of  
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Table 8 

Valence bond stares 

,c--c-L5 = 

,~-c=c,--~-~ +~~ [~ß3 

,c-~-c) = - ~ ~ - ~ ~ ~  

Rumer's rule for the linear dependence of valence bond states. The C 2 symmetry- 
adapted covalent states are 

I~B> = IC=C-Q> + l~-C=C>, 

12A> = IC-~-C), 

which are antisymmetric and symmetric, respectively, under Pc  and are good appmxi- 
mations to the two lowest energy eigenvectors for x close to one. The ground state 12B) 
is called a resonating valence bond stare 0~VB). Anderson has used such states in his 
RVB theory of superconductivity. He describes the different structure as differing in the 
flipping of spins and the interaction between the structures as magnetic. These concepts 
do not occur in the freeon formulation. 

The unpaired electmn density of the central allyl mdical atom (b) has been 
estimated to be Po = -0.16. At x = 0, 12) is assigned the unpaired electron, but it has 
an electron density of zero on the central atom; so at x = 0, Pt, = 0, while for x - 1, 
p» = -1/3, so the experimental value of x is = 0.5. In practice, the molecular orbital 
states (x = 0) give the best approximation of the spectrum and the valence bond states 
(x = 1) give the best approximation to the structure. 

12. Summary and conclusions 

We have presented the theoretical basis of the freeon N-electron procedure and 
applied the procedure together with the Hückel-Hubbard Hamiltonian to produce the 
Hubbard connecfion between molecular orbital and valence bond states. Further 
details of the Hubbard connections are to be found in the soon-to-be-published 
Pariser-Parr-Pople volume of the Intemational Joumal of Quantum Chemistry. 
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